然而,对于有着已知属性的小类来说,它可能是个瓶颈。这个字典浪费了很多内存。Python 不能在对象创建时直接分配一个固定量的内存来保存所有的属性。因此如果你创建许多对象(我指的是成千上万个),它会消耗掉很多内存。 不过还是有一个方法来规避这个问题。这个方法需要使用 __slots__
来告诉 Python 不要使用字典,而且只给一个固定集合的属性分配空间。
class MyClass(object):
def __init__(self, name, identifier):
self.name = name
self.identifier = identifier
self.set_up()
# ...
class MyClass(object):
__slots__ = ['name', 'identifier']
def __init__(self, name, identifier):
self.name = name
self.identifier = identifier
self.set_up()
# ...
Python 3.4.3 (default, Jun 6 2015, 13:32:34)
Type "copyright", "credits" or "license" for more information.
IPython 4.0.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]: import ipython_memory_usage.ipython_memory_usage as imu
In [2]: imu.start_watching_memory()
In [2] used 0.0000 MiB RAM in 5.31s, peaked 0.00 MiB above current, total RAM usage 15.57 MiB
In [3]: %cat slots.py
class MyClass(object):
__slots__ = ['name', 'identifier']
def __init__(self, name, identifier):
self.name = name
self.identifier = identifier
num = 1024*256
x = [MyClass(1,1) for i in range(num)]
In [3] used 0.2305 MiB RAM in 0.12s, peaked 0.00 MiB above current, total RAM usage 15.80 MiB
In [4]: from slots import *
In [4] used 9.3008 MiB RAM in 0.72s, peaked 0.00 MiB above current, total RAM usage 25.10 MiB
In [5]: %cat noslots.py
class MyClass(object):
def __init__(self, name, identifier):
self.name = name
self.identifier = identifier
num = 1024*256
x = [MyClass(1,1) for i in range(num)]
In [5] used 0.1758 MiB RAM in 0.12s, peaked 0.00 MiB above current, total RAM usage 25.28 MiB
In [6]: from noslots import *
In [6] used 22.6680 MiB RAM in 0.80s, peaked 0.00 MiB above current, total RAM usage 47.95 MiB